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Abstract
For matched data from disparate sources (objects observed under different conditions), optimality of
information fusion must be defined with respect to the inference task at hand. Defining the task as
matched/unmatched hypothesis testing for dissimilarity observations, the forthcoming Manifold Match-
ing paper by Priebe et al. [4] presents an embedding method based on joint optimization of fidelity
(preservation of within-condition dissimilarities between observations of an object) and commensurabil-
ity (preservation of between-condition dissimilarities between observations) . We investigate the tradeoff
between fidelity and commensurability by varying weights in weighted embedding of an omnibus dis-
similarity matrix. Optimal (defined with respect to the power of the test) weights for the optimization
correspond to an optimal compromise between fidelity and commensurability. The two extremes of this
tradeoff are commensurability optimization prioritized over fidelity optimization and vice versa. Re-
sults indicate optimal weights are different than equal weights for commensurability and fidelity and our
weighted embedding scheme provides significant improvements in test power.

Key Words: Multidimensional Scaling, Manifold Matching, Disparate Sources, Fidelity, Commensura-
bility, Information Fusion, Canonical Correlation, Procrustes Matching

1. Problem Setting

The problem setting is one where the data are available in a dissimilarity representation, possibly because
the observations themselves are not available, or too complex to be used in inference tasks. If our inference
task is one where we can not use the dissimilarities directly, Multidimensional Scaling (MDS) [6, 1, 3]
can be used for embedding the observations in the Euclidean space with a chosen dimension d such
that the distances between the observations are as close as possible (in various senses) to the original
dissimilarities. Different criterion functions can be used to measure how close the distances are to the
given dissimilarities, leading to different embedded configurations. Given n × n dissimilarity matrix
∆ = {δst; 1 ≤ s ≤ n; 1 ≤ t ≤ n}, one possible function is the weighted raw-stress:

σW (X) =
∑

1≤s≤n;1≤t≤n

wst(dst(X)− δst)2 (1)

for an n× p configuration matrix (n points in p dimensions) X where dst(X) is the Euclidean distance
between sth and tth rows of X and wst is the weight for stth squared difference. We will refer to the
n× n matrix representation of the weights and Euclidean distance as W and D(X), respectively.

We wish to study the dissimilarity-representation version of the following hypothesis testing problem:
Suppose we have n different objects/entities that are measured under K different conditions with mea-
surement vectors xik indexed by object and condition. Each of the measurements xik lies in the corre-
sponding space Ξk.

Ξ1 · · · ΞK
Object 1 x11 ∼ · · · ∼ x1K

...
...

...
...

Object n xn1 ∼ · · · ∼ xnK

Given K new measurements/observations, y1, . . . ,yk, . . . ,yK , yk ∈ Ξk, we wish to test the null
hypothesis that “these observations are from the same object” versus the alternative hypothesis that
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“they are not from the same object” [4]:

H0 : y1 ∼ y2 ∼ · · · ∼ yK versus HA : ∃i, j, 1 ≤ i < j ≤ K : yi � yj

We can restate the null hypothesis as the case where the observations are “matched” and the alternative
as the case where they are not “matched”.

As it turns out, all of the observations are in a dissimilarity representation; that is, instead of
{xik; i = 1, . . . , n; k = 1, . . . ,K}, and {yk; k = 1, . . . ,K}, we are given n × n dissimilarity matrices
{∆k; k = 1, . . . ,K} with entries {δijk; i = 1, . . . , n; j = 1, . . . , n} and a vector (of length nK) of
dissimilarities ∆new = {δnewik ; i = 1, . . . , n; k = 1, . . . ,K} where δnewik is the dissimilarity between
xik and yk. We again wish to test whether these dissimilarities arose from measurements for which
the null hypothesis is true – whether the measurements are “matched” or not. Since dissimilarities are
measured between pairs of objects under the same condition, we have separate dissimilarity matrices
consisting of dissimilarities between pairs of measurements for each separate condition. Due to the fact
that data sources are “disparate”, it is not immediately obvious how a dissimilarity between an object
in one condition and another object in another condition can be computed, or even defined. In general,
these between-condition between-object similarities are not available.

2. Manifold Matching

This hypothesis testing task is a specific case of a joint inference task from disparate data sources. Our
approach requires the measurements in different conditions to be commensurate. As a solution, we
will propose “manifold matching”, which is defined as simultaneous “manifold learning” and “manifold
alignment” – identifying embeddings of multiple disparate data sources into the same low-dimensional
space where joint inference can be pursued. We can formalize this approach by considering maps
ρk, k = 1, . . . ,K from measurement spaces Ξk to a low-dimensional commensurate space X . The learn-
ing problem involves estimating these maps from a training data of matched measurements, though the
maps might not necessarily be explicit, as in the following case.

Suppose we are able to combine the given dissimilarity matrices {∆k, k = 1, . . . ,K} into one omnibus
dissimilarity matrix M , imputing entries if necessary. Consider, for K = 2,

M =

[
∆1 L
LT ∆2

]
(2)

where L is a matrix of imputed entries. Using MDS to embed this omnibus matrix into a space X ,

we obtain 2n embedded observations {ỹ(k)
i ; i = 1, . . . , n; k = 1, 2} in a single space, with distances

between the different observations consistent with the given dissimilarities. Now that the observations
are commensurate, we can compute a test statistic

τ = d
(
ỹ

(1)
i , ỹ

(2)
j

)
for ith and jth observations under different conditions. For “large” values of τ , we will reject the null
hypothesis. We will refer to this approach as the Joint Optimization of Fidelity and Commensurability
(JOFC) approach, for reasons that will be explained in Section 6. In this approach, the mappings
{ρk, ; k = 1, . . . ,K} are not explicitly defined.

In any exploitation task that necessitates such an matching of manifolds or where the matching is
expected to improve performance, we will use the omnibus embedding approach to put the observations
in a single space where they are commensurate.

Given dissimilarities between K new test observations and the previous nK training observations
(referred to as out-of-sample (OOS)), it is necessary to embed them along with the original (in-sample)
nK × nK dissimilarities between training observations. In many applications, it is practical to pre-
embed the in-sample dissimilarities and extend the embedding with out-of-sample dissimilarities, rather
than re-embed the augmented dissimilarity matrix which includes both in-sample and out-of-sample
dissimilarities. This out-of-sample extension is used in various approaches in this paper. Out-of-sample
embedding can be done one observation at a time, or jointly if the dissimilarities among multiple test
observations are also available.
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We will assume the commensurate space X is Rd where d is pre-specified. The selection of d – model
selection – is a task that requires much attention and is beyond the scope of this article.

For the remainder of this paper, for simplicity we consider the K = 2 case, although the generalization
to K > 2 conditions is straightforward.

3. “Matched” and “Conditions” in data

What we mean by “conditions” and “matched” is dependent on the context of the problem. Conditions
could be different modalities of data, e.g., one condition could be an image of an object, while the other
condition could be a text description of the object. “Matched”, in general, means observations of the
same object, or realizations of a common concept. Some specific examples include:

• If the objects are wiki documents, a condition could be the textual content of the wiki document
and another condition could be the wiki hyperlink graph. “Matched” could mean two wiki articles
“are on the same topic”.

• The condition of a text document can be the language it is in and “matched” could mean two
documents “are about the same topic” or translations of each other.

• For photos, “conditions” are different acquisition conditions and “matched” photos mean they are
“of the same person”. Acquisition conditions could be

– indoor lighting vs outdoor lighting
– two cameras of different quality
– passport photos and airport surveillance photos.

• We might be talking about objects in a single space with multiple dissimilarities, where dissimi-
larities are measured for different purposes, or judged by different people.

4. Two models for generating data

Here we propose two data models that illustrate our idea of matchedness.

4.1 Gaussian setting

Let Ξ1 = Rp and Ξ2 = Rp. Let αi ∼iid MVNormal(0, Ip) represent n “objects”. Let Xik ∼iid
MVNormal(αi,Σ) represent K = 2 matched measurements (each under a different condition). Σ
is a positive-definite p × p matrix such that max(Λ(Σ)) = 1

r where Σ = UΛ(Σ)U ′ is the eigenvalue
decomposition of Σ. See Figure 1.

The parameter r controls the variability between “matched” measurements. If r is large, we expect
the distance between matched measurements Xi1 and Xi2 to be stochastically smaller than Xi′1 and
Xi′2 for i 6= i′ ; if r is small, then “matched” is not informative in terms of similarity of measurements.
Smaller r will make the decision problem harder and will lead to higher rate of errors or tests with
smaller power for a given value of allowable type I error rate α.

4.2 Dirichlet setting

Let Sp = {x : x ∈ R(p+1),
∑p+1
l=1 xl = 1, xl > 0 ∀ l = 1, . . . , p+ 1} be the standard p-simplex in Rp+1.

Let Ξ1 = Sp and Ξ2 = Sp. Denote a vector of ones by 1p+1 ∈ R(p+1). Let αi ∼iid Dirichlet(1p+1)
represent n “objects” and let Xik ∼iid Dirichlet(rαi + 1p+1) represent K measurements. See Figure 2.

The parameter r again controls the variability between “matched” measurements.

4.3 Noise

Measurements Xik carry the signal that is relevant to our exploitation task. Noise dimensions can
be introduced to the measurements by concatenating a q-dimensional error vector whose magnitude is
controlled by the parameter c. The noisy measurements will be represented by the random vectors

X̆ik = [(1− c)Xik cEik] (3)
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Figure 1: For the Gaussian setting (Section 4.1), the αi are denoted by black points and the
Xik are denoted by red and blue points respectively.
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r

αi
Xi1

αi

Xi2

Ξ2Ξ1
1
r

Figure 2: For the Dirichlet setting (Section 4.2), the αi are denoted by black points and the
Xik are denoted by red and blue points respectively.
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where Eik ∼iid Dirichlet(1(q+1)) for the Dirichlet setting and Eik ∼iid MVNormal(0, (1 + 1
r )Iq) for the

Gaussian setting. X̆ik will be used instead of Xik for computing dissimilarities in the “noisy” version
of the problem. These noisy measurements allow the comparison of different methods applied to the
problem with respect to their robustness.

5. Related Work

There have many efforts toward solving “manifold alignment”, which is a related problem. “Manifold
alignment” seeks to find correspondences between observations from different “conditions”. The setting
that is most similar to ours is the semi-supervised setting, where a set of correspondences are given
and the task is to find correspondences between a new set of points in each condition. In contrast,
our hypothesis testing task is to determine whether any given pair of points is “matched” or not. The
proposed solutions follow a common approach in that they look for a common commensurate or a latent
space, such that the representations (possibly projections or embeddings) of the observations in the
commensurate space match.

Wang and Mahedavan [7] suggest an approach that uses embedding followed by Procrustes Analysis
to find a map to a commensurate space. Given a paired set of points, Procrustes Analysis [5], finds
a transformation from one set of points to another in the same space that minimizes sum of squared
distances, subject to some constraints on the transformation. In the case mentioned in [7], the paired
set of points are corresponding low-dimensional embeddings of kernel matrices. For the embedding step,
they made the choice of using Laplacian Eigenmaps, though their algorithm allows for any appropriate
embedding method.

Zhai et al. [8] finds two projection matrices to minimize three terms in an energy function similar to
our JOFC approach (see Section 2). One of the terms is the correspondence preserving term which is the
sum of the squared distances between corresponding points and is analogous to our commensurability
error term. The other two terms are manifold regularization terms and consist of the reconstruction
error for a Locally Linear Embedding of the projected points. These terms, analogous to fidelity, make
sure the projections in the lower dimension retain the structure of the original points. For fidelity error
terms in our setting, this is done by preserving dissimilarities. For manifold regularization terms, this is
done by preserving the local neighborhood of points, such that close points are not mapped apart.

6. Fidelity and Commensurability constraints for Manifold Matching

Unless

• the dissimilarity matrix is the Euclidean distance matrix of the original observations, and,

• the embedding dimension is greater or equal to the dimension of the original observations,

MDS with raw stress will not result in a perfect reconstruction of the original observations. Note that
we are not neccessarily interested in perfect reconstruction, but the best embedding for our exploitation
task which is to test whether two sets of dissimilarities are “matched”. Two concepts will help us argue
how the manifold matching should proceed in order to optimize the matching for the exploitation task
we are to carry out.

• Fidelity is how well the mapping to commensurate space preserves the original dissimilarities. Our
within-condition fidelity error is given by

εfk =
1(
n
2

) ∑
1≤i<j≤n

(d(x̃ik, x̃jk)− δk(xik,xjk))2 (4)

where xik is the original observation of the ith object for the kth condition and x̃ik is the embedded
configuration of the ith object for the kth condition; d(·, ·) is the Euclidean distance function (for the
embedding space) and δk(·, ·) is the dissimilarity function defined for objects in the kth condition.

• Commensurability is how well the mapping to commensurate space preserves matchedness of
matched observations. Between-condition commensurability error is given by

εck1k2
=

1

n

∑
1≤i≤n;k1<k2

(d(x̃ik1 , x̃ik2)− δk1k2(xik1 ,xik2))2 (5)

5
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for conditions k1 and k2; δk1k2(·, ·) is the (notional) dissimilarity function between measurements
in kth1 and kth2 conditions.

Although the between-condition dissimilarities of the same object, δk1k2(xik1 ,xik2), are not avail-
able, it is not unreasonable in this setting to set δk1k2(xik1 ,xik2) = 0 for all i, k1, k2. So we choose
diagonal entries of L in equation (2) to be all zeroes. Setting these diagonal entries to zero forces
matched points to be embedded close to each other. We ignore the possibility that this choice
for between-condition dissimilarities might not be optimal, in order to concentrate on the main
problem.

Then, the commensurability error becomes

εck1k2
=

1

n

∑
1≤i≤n;k1<k2

(d(x̃ik1 , x̃ik2)))2

There is also between-condition separability error given by

εsk1k2
=

1(
n
2

) ∑
1≤i<j≤n;k1<k2

(d(x̃ik1 , x̃jk2)− δk1k2(xik1 ,xjk2))2.

This error will be ignored herein, due to the fact that δk1k2(xik1 ,xjk2) is not available. Although it is
possible to impute these dissimilarities, the optimal imputation is an open question and ignoring these
terms provides for investigation of simpler, still open questions.

Note that the omnibus embedding approach tries to jointly optimize fidelity and commensurability.
This is most obvious in the raw stress version of MDS, since the individual terms can be separated
according to whether they are contributing to fidelity or commensurability error.

Consider the weighted raw stress criterion σW (·) with a weighting matrix W , given in equation (1).
The omnibus matrix M we are considering is a partitioned matrix consisting of matrices from different
conditions (k = 1, 2), so we index the entries of the matrix by 4-tuple i, j, k1, k2 which refers to the entry
in the ith row and jth column of the submatrix in the kth1 row partition and kth2 column partition. For
example, the entry M2n,n will have the indices {i, j, k1, k2} = {n, n, 2, 1} in the new indexing scheme.
D(·) and W , which are the same size as M , follow the same 4-tuple indexing. Then,

σW (·) =
∑

i,j,k1,k2

wijk1k2(dijk1k2(·)−Mijk1k2)2

=
∑

i=j,k1<k2

wijk1k2(dijk1k2(·)−Mijk1k2)2

︸ ︷︷ ︸
Commensurability

+
∑

i<j,k1=k2

wijk1k2(dijk1k2(·)−Mijk1k2)2

︸ ︷︷ ︸
Fidelity

+
∑

i<j,k1<k2

wijk1k2(dijk1k2(·)−Mijk1k2)2

︸ ︷︷ ︸
Separability

. (6)

Since we set δk1k2(xik1 ,xik2) = 0, the corresponding entries of M in the commensurability terms will
be 0.

Since we choose to ignore the separability error, we choose the weights for separability terms to be
0. This also means off-diagonal elements of L in equation (2) can be ignored. When separability terms
are removed from equation (6), the resulting equation is a sum of fidelity and commensurability error
terms:

σW (·) =
∑

i=j,k1<k2

wijk1k2(dijk1k2(·))2

︸ ︷︷ ︸
Commensurability

+
∑

i<j,k1=k2

wijk1k2(dijk1k2(·)−Mijk1k2)2

︸ ︷︷ ︸
Fidelity

.

This motivates referring to our omnibus embedding approach as Joint Optimization of Fidelity and
Commensurabilty (JOFC).
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Note that for the purpose of minimization, setting all weights wijk1k2 equal is equivalent to the
unweighted raw stress σ(X):

σ(X) =
∑

1≤s≤n;1≤t≤n

(dst(X)− δst)2 (7)

7. Alternative Methodologies

For the optimization of commensurability with fidelity as secondary priority, one can use Canonical
Correlational Analysis (CCA) [2], which aims to find linear subspaces of the space the data resides in
such that the projection of data to those subspaces results in observation vectors that are maximally
correlated. CCA finds a basis for these subspaces iteratively: For each new component in the basis, CCA
finds the pair of directions that maximizes correlation with the constraint that the projections along
the new directions are uncorrelated with projections along previous components. The latter constraint
results in additional preservation of fidelity for each new direction. For the optimization of fidelity, one
can use Principal Components Analysis (PCA), which aims to find linear subspaces such that projection
of data to those subspaces results in observation vectors that represent the original data as best as
possible. To optimize commensurability as secondary priority, one can use the projections computed by
PCA to compute a Procrustes transformation that will make the projections commensurate. Since the
data is originally in a dissimilarity representation, we can directly embed in the low-dimensional space
and use Procrustes Analysis to find a mapping between the two separate embeddings. The equivalence
of PCA and Classical Multidimensional Scaling [6] under certain conditions suggests that this approach
is the right analog of Procrustes ◦ PCA in a dissimilarity setting.

The omnibus embedding approach is expected to be more powerful for the exploitation task than
either of the sequential optimizations, since the exploitation task (testing matchedness) requires both
optimization of fidelity and commensurability.

7.1 Procrustes Analysis on Multidimensional Scaling Embeddings

Since separate condition dissimilarities are available, a straightforward approach is to embed each condi-
tional dissimilarity matrix, ∆1 and ∆2, separately in d-dimensional Euclidean space (call these embedded
configurations X1 and X2, respectively) and then find a mapping function ρ : Rd → Rd that maps each
point in X2 to approximately its corresponding point in X1.

Procrustes Analysis [5] finds a orthonormal matrix Q∗ that minimizes the sum of squared distances
between the target configuration X1 and the configuration X2 transformed by Q∗, i.e.,

Q∗ = arg min
QTQ=I

‖X1 −X2Q‖F

where ‖ · ‖F is the Frobenius norm on matrices. The transformation ρ represented by Q∗ makes the
separate MDS embeddings commensurate. Once such a mapping is computed, one can out-of-sample
embed new dissimilarities for each condition (separately) and use Q∗ to make the embeddings commen-
surate. One can then compute the test statistic τ (the distance between commensurate embeddings) for
the hypothesis testing problem. We will refer to this approach as P◦M.

Note that the Procrustes transformation Q∗ is limited to a linear transformation consisting of rotation
and reflection and possibly also scaling components. The optimal mapping might very well be non-linear.
If we allow a larger class of mappings to be considered, we would have a smaller model bias for the
mapping function, but we would be paying for it in the form of larger variability. By only considering
the class of linear transformations, we are able to learn Q∗ with our limited dataset.

7.2 Canonical Correlational Analysis on Multidimensional Scaling Embeddings

Again MDS is used to compute embedding configurations, X1 and X2. We want to embed into the
highest dimensional space possible (e.g., Rd′ where d′ = p + q for our Gaussian and Dirichlet settings)
to preserve as many of the signal dimensions as possible (at the risk of possibly including some noise
dimensions). CCA [2], then, yields two mappings U1 and U2 that map these embeddings in Rd′ to the
low-dimensional commensurate space (Rd).

7
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Canonical Correlational Analysis

Let X and Y be two s-dimensional random vectors. If one wants to find the pair of linear projection
operators U1 : Rs → R, U2 : Rs → R that maximize correlation between the projections of X and Y ,
CCA finds the solution as stated in the optimization problem

û1, û2 = arg max
u1∈Rs,u2∈Rs

E[uT1 XY
Tu2]

E[uT1 XX
Tu1]E[uT2 Y Y

Tu2]

with the constraints E[uT1 XX
Tu1] = 1, E[uT2 Y Y

Tu2] = 1 for uniqueness. The constraints simplify the
optimization function to

arg max
u1∈Rs,u2∈Rs

E[uT1 XY
Tu2].

If the projections are to a pair of d-dimensional linear subspaces, the additional pairs of projection
vectors can be computed sequentially, with the constraints that the projections along the new directions
are uncorrelated with projections along previous directions. That is, ith pair of directions that maximize
correlation is computed by

û1(i), û2(i) = arg max
u1(i),u2(i)∈Rs

E[uT1(i)XY
Tu2(i)]

subject to constraints E[uT1(i)XX
Tu1(i)] = 1 , E[uT2(i)Y Y

Tu2(i)] = 1, E[uT1(i)XX
Tu1(j)] = 0, E[uT2(i)Y Y

Tu2(j)] = 0

∀ j = 1, . . . , i − 1. For sample CCA, E[XXT ],E[Y Y T ] and E[XY T ] are replaced with their sample
estimates. The direction vectors û1(i), û2(i), i = 1, . . . , d form the rows of projection matrices which
represent the mappings U1 and U2.

Note that s, the dimension of X and Y , is the embedding dimension d′ in the CCA approach.
As in P◦M, new dissimilarities are out-of-sample embedded and mapped to a commensurate space

by maps provided by CCA. We can now compute the test statistic and reject the null hypothesis for
“large” values of the test statistic τ as in Section 7.1.

7.3 Relation of P ◦M and Joint Optimization of Fidelity and Commensurability

Suppose we let wijk1k2 = w for commensurability terms and wijk1k2 = 1−w for fidelity terms in equation
(6). For the resulting weight matrix W , define

fw(D(·),M) = σW (·) (8)

where M is the omnibus matrix obtained from a given pair of dissimilarity matrices, ∆1 and ∆2, as
in equation (2). As w goes to 0, the configuration embedded by JOFC converges to a configuration
equivalent to (up to rotation and reflection) the configuration embedded by P◦M.

Theorem 1. Define σ(·) = σW=1(·) (unweighted raw stress) where 1 is a matrix of 1’s. Let X1 and
X2 be the corresponding n× p configuration matrices with column means of 0 (obtained from separately
embedding ∆1 and ∆2 by minimizing the raw stress σ(·) ). Let Q = arg minPTP=PPT=I ||X1 −X2P||2 ,

X̃2 = X2Q, and let X =

[
X1

X̃2

]
.

For w > 0, let Yw =

[
Y1

Y2

]
be a 2n×p configuration matrix obtained by minimization of f(Y,M) =

(1− w) (σ(Y1) + σ(Y2)) + w||Y1 − Y2||2 with respect to Y =

[
Y1

Y2

]
with the constraint that Y1 and Y2

are two n× p configuration matrices having column means of 0. Then,

limw→0Yw = XR

for a p×p orthonormal matrix R. (R is a transformation matrix with a rotation and possibly a reflection
component.)

8
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7.4 Relation of CCA and Commensurability

Theorem 2. Let U be the set of all orthogonal d-frames (ordered set of d linearly independent vectors)
of Rd

′
. Let X1 and X2 be two n×d′ (configuration) matrices that are perfectly “matched” (there exists a

transformation matrix Q such that ‖X1Q−X2‖ = 0). If commensurability is defined as in equation (5),
where the embedded configurations are X̃1 = X1U1 and X̃2 = X2U2 for some U1 ∈ U and U2 ∈ U , and
the original dissimilarities are D(X1) and D(X2), CCA on X1 and X2 gives U1 ∈ U and U2 ∈ U , the
two elements of U that maximize commensurability, subject to UT1 X

T
1 X1U1 = Id and UT2 X

T
2 X2U2 = Id

(Id is the d× d identity matrix).

8. Fidelity and Commensurability Tradeoff

The major question addressed in this work is whether preservation of fidelity or commensurability is
more essential for our hypothesis testing task. The weights in raw stress allow us to answer this question
relatively easily. Since in equation (6), each term indexed with i, j is either a fidelity or a commensura-
bility term, setting wij to w and 1 − w for commensurability and fidelity terms respectively will allow
us to control the importance of fidelity and commensurability terms in the optimization by varying w.

σW (X) = fw(D(X),M)

=
∑

i=j,k1 6=k2

w(dijk1k2(X))2

︸ ︷︷ ︸
Commensurability

+
∑

i<j,k1=k2

(1− w)(dijk1k2(X)−Mijk1k2)2

︸ ︷︷ ︸
Fidelity

= (w) (n) εck1=1,k2=2
+ (1− w)

(
n

2

)
(εfk=1

+ εfk=2
)

Our expectation is that there is a w∗ that is optimal for the specific exploitation task (has the best
power in hypothesis testing). In fact, our exploratory simulations confirm the power of the tests varies
with varying w and indicate the range where the optimal w∗ lies.

9. Definition of w∗

Let Fm be the joint distribution of Xm =

[
X1m

X2m

]
and Fu be the joint distribution of Xu =

[
X1u

X2u

]
where X1m, X2m are the random vectors of dimension d′ for the matched observation pair and X1u, X2u

are the random vectors of dimension d′ for the unmatched data pair. The constraint on Fm is that
correlation matrix of X1m, X2m is non-zero, while the constraint on Fu is that correlation matrix of
X1u, X2u is zero.

Let T denote the random variable for a data matrix (2n × d′) for an i.i.d. sample of

[
X1m

X2m

]
and

let Tmc denote realization of T for any Monte Carlo replicate.
For the exploitation task at hand, it is assumed that either

• we are given a sample of T (Tmc) and a sample of Xm and Xu

(
xm =

[
x1m

x2m

]
,xu =

[
x1u

x2u

])
and we compute Euclidean distances between x.m and the rows in Tmc and Euclidean distances
between x.u and the rows in Tmc to form dissimilarity matrices ∆m and ∆u, or

• we are given values of dissimilarity matrix-valued function D of the sample of Xm, Xu and Tmc:

∆m = D

 Tmc

x1m

x2m


∆u = D

 Tmc

x1u

x2u


where the (s, t)th entry of D(·) (dst(·) in equation (1)) is the Euclidean distance between the sth

and tth rows of its argument.
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Either way, we define the disssimilarity matrices ∆m

 T
X1m

X2m

 and ∆u

 T
X1u

X2u

 as two

matrix-valued random variables.
The criterion function for the embedding is σW (·) = fw(D(·),∆). The embedding for the unmatched

pair X̂1u, X̂2u is

X̂1u, X̂2u = arg min
X́1u,X́2u

min
T́

fw

D
 T́

X́1u

X́2u

 ,∆u


where there is an implicit dependence on T, because ∆u depends on T. A similar expression gives the
embedding for the matched pair X̂1m, X̂2m. Define FY as the cumulative distribution function of Y
where Y can be any function of X̂m or X̂u.

Then
βα (w) = 1− Fd(X̂1u,X̂2u)(F

−1

d(X̂1m,X̂2m)
(1− α)).

Finally, define
w∗ = argmaxwβα (w).

Even for given Fu,Fm, w∗ must be defined with respect to the value of allowable type I error rate
α. For two different α values, it is quite possible that βα1(w1) > βα1(w2) and βα2(w1) < βα2(w2). This
can be observed in results in Section 10.

One of the important questions to be explored is the uniqueness of w∗.

10. Simulation Results

To compare the different approaches, training data of matched sets of measurements were generated
according to the Dirichlet and Gaussian settings. Dissimilarity representations were generated from
pairwise distances of measurements. A set of matched pairs of measurements and unmatched pairs of
measurements were also generated for testing. The test statistics (computed via P◦M, CCA and JOFC
approaches) for matched and unmatched pairs were used to compute power values at a set of fixed type
I error rate α values.

Additionally, to take robustness of methods into consideration, “noisy” measurements were created
from the original measurements by concatenating randomly generated independent noise vectors (sub-
section 4.3). This setting will be referred to as the “noisy case”. The original setting, with c = 0, will be
referred as the “noiseless case”. If the magnitude of noise (controlled by the parameter c in equation (3))
is small enough, PCA and MDS will not be affected significantly, but if the number of noisy dimensions
(controlled by the parameter q in the distribution of Eik as defined in equation (3)) is large enough,
CCA will be affected due to spurious correlation between noisy dimensions.

Given the setting (”Gaussian”,”Dirichlet”), the steps for each Monte Carlo replicate are as follows:

• A training set (Tmc) which consists of n pairs of matched measurements is generated. If c = 0,
we are in the “noiseless” setting and measurements are p-dimensional vectors, otherwise we are in
the “noisy” setting and measurement vectors are (p+ q)-dimensional.

• Dissimilarities are computed and embedded in Euclidean space via MDS (followed by a transforma-
tion from Rd to Rd and projection into Rd, respectively for P◦M and CCA). The final embeddings

lie in Rd. Denote this in-sample embedding as T̂. Note that if the JOFC method is being used,
embedding is carried out with the weighted raw stress function σW (·) = fw(D(·),M) in equation
(8) with a common weight w for commensurability terms and another common weight 1 − w for
fidelity terms, otherwise unweighted raw stress function (σ(·)) is used as a criterion function for
embedding.

• We generate m pairs of matched measurements which we treat as out-of-sample, and

– compute the dissimilarities between these out-of-sample points and the points in Tmc,

– embed the OOS dissimilarities as pairs of embedded points via the OOS extension:

(ỹ
(1)
1 , ỹ

(2)
1 ), . . . , (ỹ

(1)
m , ỹ

(2)
m ),
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– compute the test statistic τ for each pair.

The values of the statistic τ are used for computing the empirical cumulative distribution function
under the null hypothesis.

• Identical steps for m pairs of unmatched measurements result in the empirical cumulative distri-
bution function of τ under alternative hypothesis.

• For any fixed α value, a critical value for the test statistic and the corresponding power is computed.

For n = 150 and m = 150, the average of the power values for nmc = 150 Monte Carlo replicates
are computed at different values of α and are plotted in Figure 3 against α for the Gaussian setting.
Qualititatively similar plots for the Dirichlet setting are not included herein for brevity. The plot in Figure
3 shows that for different values of w, we have varying power curves, and some w values outperform others
in terms of power. In Figure 4, β(w) is plotted against w for fixed values of α. It is interesting that the
optimal value of w seems to be in the range of (0.85, 1) for all settings, which suggests commensurability
might be more critical for our hypothesis testing task.

Note that in Figure 3 for α = 0.05, βα=0.05(w = 0.99) ≥ βα=0.05(w = 0.5). However, for α = 0.2,
βα=0.2(w = 0.99) ≤ βα=0.2(w = 0.5). This justifies our comment that w∗ must be defined with respect
to α.

Note that for all of the settings, the estimate of the optimal w∗ has higher power than w=0.5
(the unweighted case). To test the statistical significance of this observation, we wish to test the null
hypothesis that H0 : βα(ŵ∗) ≤ βα(w = 0.5) against the alternative HA = βα(ŵ∗) > βα(w = 0.5). The
least favorable null hypothesis is that H0 : βα(ŵ∗) = βα(w = 0.5).

For a fixed α value, one can compute two critical values using the test statistic values for the two w
values that are being compared. Using these critical values, we can determine the decision made by each

test for each pair of embedded points, (ỹ
(1)
i , ỹ

(2)
i ), i = 1, . . . ,m. To compare the two statistical tests with

different w values, one can prepare a 2× 2 contingency-table of correct decisions and incorrect decisions
made by each statistical test (or equivalently true and false classifications made by two classifiers). Denote
decision outcome as c1 for the first statistical test and c2 for the second statistical test. If c1 = True
and c2 = False for an instance, the first test made the correct decision and the second test made the
incorrect decision with regard to the null and alternative hypotheses. Consider the contingency table for
a Monte Carlo replicate given by

G(l) =
e

(l)
FF e

(l)
TF

e
(l)
FT e

(l)
TT

where l is the index of the MC replicate, e
(l)
c1c2 is equal to the number of instances at which the true

hypothesis were identified correctly (c1 = True) or incorrectly (c1 = False) by the first test, and correctly
(c2 = True) or incorrectly (c2 = False) by the second test in that MC replicate.

Under the null hypothesis, Pr[(c1c2) = (TF )] = Pr[(c1c2) = (FT )], so
∑
l I{e

(l)
TF > e

(l)
FT } will be

distributed according to the binomial distribution, B(nmc, 0.5). (I{·} is the indicator function.)
For the noisy version of the Gaussian setting at allowable type I error 0.05 for the two tests, when

comparing the null hypothesis that H0 : βα(ŵ∗) = βα(w = 0.5) against the alternative HA = βα(ŵ∗) >
βα(w = 0.5), we find p < 1.09E−24 which indicates the power using estimate of optimal w∗ is significantly
greater than the power when using w = 0.5.

11. Conclusion

We have investigated the tradeoff between Fidelity and Commensurability and the relation to the
weighted raw stress criterion for MDS. Two alternative approaches, P◦M and CCA, were presented
as extremes of the tradeoff between Fidelity and Commensurability. For hypothesis testing as the ex-
ploitation task, the three approaches were compared in terms of testing power. The results indicate that
the joint optimization (JOFC) approach is superior to CCA and P◦M, and is also robust to spurious
correlations CCA suffers from. Also when doing a joint optimization, one should consider an optimal
compromise point between Fidelity and Commensurability, which corresponds to an optimal weight w∗ of
the weighted raw stress criterion in contrast to the unweighted raw stress for omnibus matrix embedding.
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Figure 3: Power (β) vs Type I error (α) plot for different w values for the Gaussian setting
(noisy case)
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Figure 4: Power (β) vs w plot for fixed Type I error (α) values for the Gaussian setting (noisy
case)
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